# The Diagrammatic Lusztig–Vogan Category for $SL(2,\mathbb{R})$

Victor Zhang

Supervised by
Dr Anna Romanov
A/Prof Pinhas Grossman

UNSW Sydney

Australian Mathematical Sciences Students Conference, 2024

### **Outline**

- 1. Context and Motivation
- 2. Diagrammatic Soergel bimodules for  $\mathfrak{sl}_2\mathbb{C}$
- 3. Diagrammatic Lusztig–Vogan category for  $SL(2,\mathbb{R})$
- 4. Further work

Complex (simply-connected) Lie groups

Complex (simply-connected) Lie groups

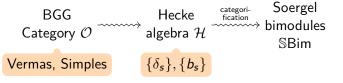
 $\begin{array}{c} \mathsf{BGG} \\ \mathsf{Category} \ \mathcal{O} \end{array}$ 

Vermas, Simples

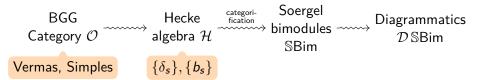
Complex (simply-connected) Lie groups

 $\begin{array}{c} \mathsf{BGG} & \mathsf{Hecke} \\ \mathsf{Category} \; \mathcal{O} & \mathsf{algebra} \; \mathcal{H} \end{array}$   $\begin{array}{c} \mathsf{Vermas, Simples} & \{\delta_s\}, \{b_s\} \end{array}$ 

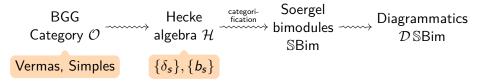
Complex (simply-connected) Lie groups



Complex (simply-connected) Lie groups

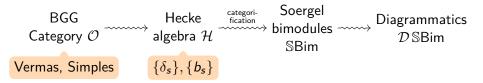


Complex (simply-connected) Lie groups



Real (reductive) Lie groups

Complex (simply-connected) Lie groups

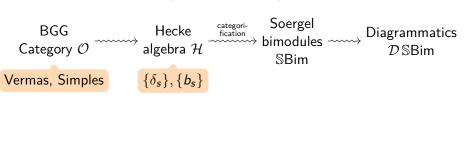


Real (reductive) Lie groups

Category of admissible reps.

Principal series', Simples

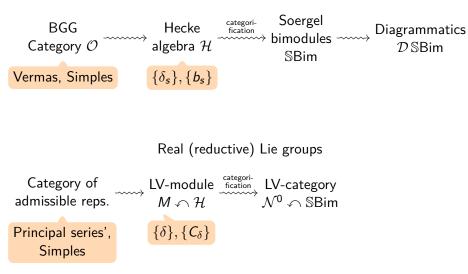
Complex (simply-connected) Lie groups



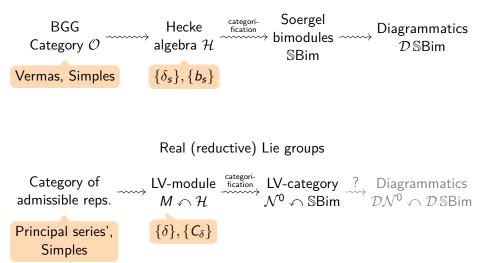
Real (reductive) Lie groups

Category of admissible reps. LV-module  $M \curvearrowright \mathcal{H}$ Principal series',  $\{\delta\}, \{C_\delta\}$ Simples

Complex (simply-connected) Lie groups



Complex (simply-connected) Lie groups



Why diagrammatics?

- Diagrammatic methods enabled Elias & Williamson (2014) to give an algebraic proof of the Kazhdan–Lusztig conjecture (1979). This is more general than can be proved geometrically.
- Provided intuition for Williamson (2017) to discover counterexamples to Lusztig's conjecture (1980).
- DSBim can be studied in contexts where SBim is not well-behaved, for example in fields of characteristic p.

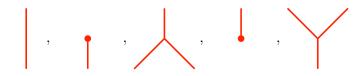
The diagrammatic Hecke category  $\mathcal{DH}$  (for  $\mathfrak{sl}_2\mathbb{C}$ ) is a  $\mathbb{Z}[\frac{1}{2}]$ -linear monoidal category defined as follows.

The diagrammatic Hecke category  $\mathcal{DH}$  (for  $\mathfrak{sl}_2\mathbb{C}$ ) is a  $\mathbb{Z}[\frac{1}{2}]$ -linear monoidal category defined as follows.

```
    Objects: generated by •
    i.e. 1, •, •• := • ⊗ •, •••, ••••, ...
```

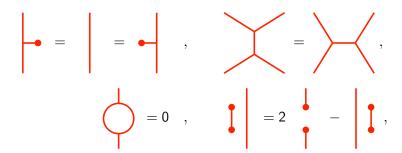
The diagrammatic Hecke category  $\mathcal{DH}$  (for  $\mathfrak{sl}_2\mathbb{C}$ ) is a  $\mathbb{Z}[\frac{1}{2}]$ -linear monoidal category defined as follows.

- Objects: generated by •
  i.e. 1, •, •• := ⊗ •, •••, ••••, ...
- Morphisms: generated by



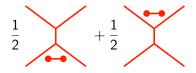
under relations...

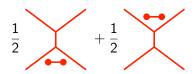
#### Relations:

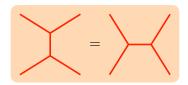


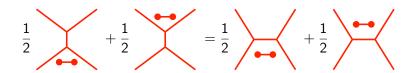
and arbitrary planar isotopy.

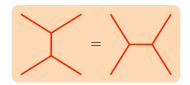


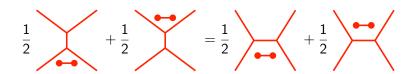


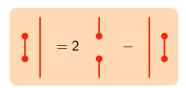


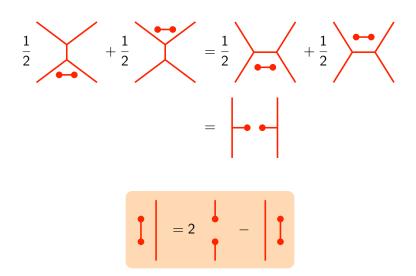


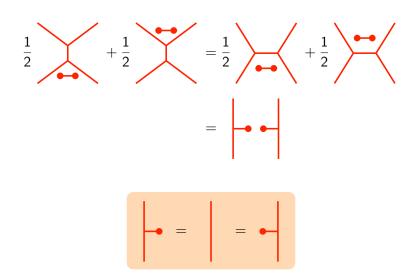


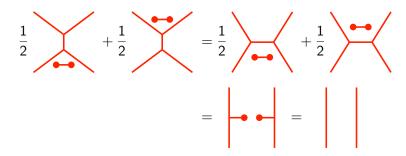












Theorem (Elias-Khovanov, 2010<sup>1</sup>)

The Karoubi envelope of  $\mathcal{DH}$  is equivalent to the category of Soergel Bimodules  $\mathbb{S}$ Bim for  $\mathfrak{sl}_2(\mathbb{C})$  as graded additive  $\mathbb{R}$ -linear monoidal categories.

 $<sup>^1{\</sup>rm Ben}$  Elias and Mikhail Khovanov. "Diagrammatics for Soergel categories". In: Int. J. Math. Math. Sci. (2010), Art. ID 978635, 58.

The diagrammatic LV-category  $\mathcal{D}\tilde{\mathcal{N}}^0$  (for  $SL(2,\mathbb{R})$ ) is a  $\mathbb{Z}[\frac{1}{2}]$ -linear right module category over  $\mathcal{DH}$  defined as follows. The right action by  $\mathcal{DH}$  is right concatenation.

The diagrammatic LV-category  $\mathcal{D}\tilde{\mathcal{N}}^0$  (for  $SL(2,\mathbb{R})$ ) is a  $\mathbb{Z}[\frac{1}{2}]$ -linear right module category over  $\mathcal{DH}$  defined as follows. The right action by  $\mathcal{DH}$  is right concatenation.

```
    Objects: generated by 1 and o
    i.e. 1, •, ••, •••, ... and o, o•, o••, ...
```

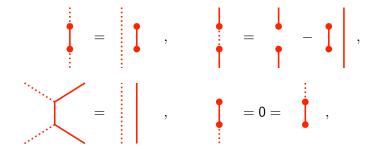
The diagrammatic LV-category  $\mathcal{D}\tilde{\mathcal{N}}^0$  (for  $SL(2,\mathbb{R})$ ) is a  $\mathbb{Z}[\frac{1}{2}]$ -linear right module category over  $\mathcal{DH}$  defined as follows. The right action by  $\mathcal{DH}$  is right concatenation.

- Objects: generated by 1 and 0
   i.e. 1, •, ••, •••, ... and 0, 0•, 0••, ...
- Morphisms: generated by



under relations...

#### Relations:



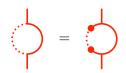
and arbitrary planar isotopy while dotted red lines never appear right of any red.

#### Remark

This diagrammatic definition is not entirely new: Elias–Williamson<sup>2</sup> had constructed very similar diagrammatics for localisation of Soergel bimodules. The LV-category is a subcategory of this, with restrained objects, morphisms and relations.

<sup>&</sup>lt;sup>2</sup>Ben Elias and Geordie Williamson. "Soergel calculus". In: Represent. Theory 20 (2016), pp. 295–374.

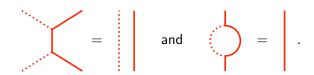




#### Theorem (Z.)

The Karoubi envelope of  $\mathcal{D}\tilde{\mathcal{N}}^0$  is equivalent to the Lusztig–Vogan category  $\mathcal{N}^0$  for  $SL(2,\mathbb{R})$  as graded additive  $\mathbb{R}$ -linear right module categories over  $\mathbb{S}Bim$  (for  $\mathfrak{sl}_2\mathbb{C}$ ).

The backbone of the proof is the isomorphism  $\bullet \simeq \circ \bullet$ , given by the relations



This reflects an isomorphism on the level of modules that allows us to construct a basis of morphisms from an existing one in  $\mathcal{DH}$ .

### **Further Work**

- There is an isomorphism  $SL(2,\mathbb{R}) \simeq SU(1,1)$ , so a natural next step is to consider SU(2,1). The aim is to define diagrammatics for the infinite family SU(n,1).
- Understand the dimension of the general morphism spaces at the level of the Lusztig-Vogan modules.

A Glimpse of SU(2,1)

#### $\mathcal{DH}$ for $\mathfrak{sl}_3\mathbb{C}$

- Objects: generated by 1, •, •.
- Morphisms: generated by



and their vertical reflections. Taken up to arbitrary isotopy.

 Relations: Same one-colour relations. New two-colour relations (omitted).

A Glimpse of SU(2,1)

$$\mathcal{D}\mathcal{\tilde{N}}^0$$
 for  $\mathsf{SU}(2,1)$ 

• Right module category over  $\mathcal{DH}$  for  $\mathfrak{sl}_3\mathbb{C}$ .

A Glimpse of SU(2,1)

$$\mathcal{D}\tilde{\mathcal{N}}^0$$
 for  $SU(2,1)$ 

- Right module category over  $\mathcal{DH}$  for  $\mathfrak{sl}_3\mathbb{C}$ .
- *Objects:* generated by  $1, \circ, \circ \circ$ .

A Glimpse of SU(2,1)

$$\mathcal{D}\tilde{\mathcal{N}}^0$$
 for  $\mathsf{SU}(2,1)$ 

- Right module category over  $\mathcal{DH}$  for  $\mathfrak{sl}_3\mathbb{C}$ .
- *Objects:* generated by 1, 0, 00.
- Morphisms: generated by



and their vertical reflections. Taken up to isotopy as long as morphisms stay within the category.

A Glimpse of SU(2,1)

$$\mathcal{D}\tilde{\mathcal{N}}^0$$
 for  $\mathsf{SU}(2,1)$ 

- Right module category over  $\mathcal{DH}$  for  $\mathfrak{sl}_3\mathbb{C}$ .
- *Objects:* generated by  $1, \circ, \circ \circ$ .
- Morphisms: generated by

and their vertical reflections. Taken up to isotopy as long as morphisms stay within the category.

 Relations: Same one-colour relations for both colours. New one-colour wall relations

$$lacksquare$$
 =  $lacksquare$  ,  $lacksquare$  =  $-lacksquare$  .

Thank you for listening!