To make the module structures explicit, we may write AMB for an (A,B)-bimodule M. Also we write HomRℓ(−,−) for morphisms of left R-modules, and HomRr(−,−) for morphisms of right R-modules.
Hom as a (bi)module
Let A,B,C be rings. Then let
- M be an (A,B)-bimodule,
- N be a (B,C)-bimodule,
- and K be an (A,C)-bimodule.
BHomAℓ(AMB,AKC)C
The additive group HomAℓ(AMB,AKC) can be endowed with the structure of a (B,C)-bimodule. That is, for some left A-module homomorphism f:M→K, define
- the left B-action to be (b⋅f)(m)=f(m⋅b)
- and the right C-action to be (f⋅c)(m)=f(m)⋅c.
The left action is well-defined because (b⋅f)(a⋅m)=f(a⋅m⋅b)=a⋅f(m⋅b)=a⋅(b⋅f)(m), so b⋅f is a left A-module homomorphism. Furthermore it forms a module because
(b1b2⋅f)(m)=f(m⋅b1⋅b2)=(b2⋅f)(m⋅b1)=(b1⋅(b2⋅f))(m),
where the other properties follow trivially.
The right action is well-defined because (f⋅c)(a⋅m)=f(a⋅m)⋅c=a⋅f(m)⋅c=a⋅(f⋅c)(m), so f⋅a is a left A-module homomorphism. It also forms a module since
(f⋅c1c2)(m)=f(m)⋅c1⋅c2=(f⋅c1)(m)⋅c2=((f⋅c1)⋅c2)(m).
This is a bimodule because ((b⋅f)⋅c)(m)=(b⋅f)(m)⋅c=f(m⋅b)⋅c=(f⋅c)(m⋅b)=(b⋅(f⋅c))(m).
Notice that the bimodule structure was inherited from the "unused" right module structures of M and K.
BHomCr(AKC,BNC)A
Similarly on the right, we can endow the additive group HomCr(AKC,BNC) with the structure of a (B,A)-bimodule. That is, for some right C-module homomorphism f:K→N, define
- the left B-action to be (b⋅f)(k)=b⋅f(k)
- and the right A-action to be (f⋅a)(k)=f(a⋅k).
The left action is well-defined because (b⋅f)(k⋅c)=b⋅f(k⋅c)=b⋅f(k)⋅c=(b⋅f)(k)⋅c, so b⋅f is a right C-module homomorphism. This has a module structure since
(b1b2⋅f)(k)=b1⋅b2⋅f(k)=b1⋅(b2⋅f)(k)=(b1⋅(b2⋅f))(k).
The right action is well-defined because (f⋅a)(k⋅c)=f(a⋅k⋅c)=f(a⋅k)⋅c=(f⋅a)(k)⋅c, so f⋅a is a right C-module homomorphism. This gives a module structure with
(f⋅a1a2)(k)=f(a1⋅a2⋅k)=(f⋅a1)(a2⋅k)=((f⋅a1)⋅a2)(k).
This is a bimodule because ((b⋅f)⋅a)(k)=(b⋅f)(a⋅k)=b⋅f(a⋅k)=b⋅(f⋅a)(k)=(b⋅(f⋅a))(k).
Now notice that this is flipped (compared to above): the left B-module structure was inherited from BNC, and the right A-module structure was inherited from AKC. If we had it the same way around here as before, we could try and define an (A,B)-bimodule structure by (a⋅f)(k)=f(a⋅m) and (f⋅b)(k)=b⋅f(k). Again we can prove that a⋅f and f⋅b are right C-module homomorphisms. However we run into problems when trying to prove it is a valid module structure. For the left action, we see that (a1a2⋅f)(k)=f(a1⋅a2⋅k)=(a1⋅f)(a2⋅k)=(a2⋅(a1⋅f))(k) is in the wrong order. For the right action, we see that (f⋅b1b2)(k)=b1⋅b2⋅f(k)=b1⋅(f⋅b2)(m)=((f⋅b2)⋅b1)(m) also has the wrong order.
Tensor-Hom Adjunctions
Let A,B,C,D be rings. Then let
- M be an (A,B)-bimodule,
- N be a (B,C)-bimodule,
- K be a (D,C)-bimodule,
- and L be a (A,D)-bimodule
−⊗BNC⊣HomCr(BNC,−)
We prove that DHomCr(AM⊗BNC,DKC)A≃DHomBr(AMB,DHomCr(BNC,DKC)B)A as (D,A)-bimodules.
Define ϕ:HomCr(M⊗BN,K)→HomBr(M,HomCr(N,K)) to map
ϕ:f↦(m↦(n↦f(m⊗n))).
This is an (D,A)-bimodule homomorphism because
- ϕ(f+g)=(m↦n↦f(m⊗n)+g(m⊗n))=ϕ(f)+ϕ(g)
- and
ϕ(d⋅f⋅a)(m)(n)=(d⋅f⋅a)(m⊗n)=d⋅f(a⋅m⊗n)=d⋅ϕ(f)(a⋅m)(n)=(d⋅(ϕ(f)⋅a)(m))(n)=(d⋅ϕ(f)⋅a)(m)(n).
Conversely, define ψ:HomBr(M,HomCr(N,K))→HomCr(M⊗BN,K) to map
ψ:g↦(m⊗n↦g(m)(n)).
This is an (D,A)-bimodule homomorphism because
- ψ(f+g)=(m⊗n↦f(m)(n)+g(m)(n))=ψ(f)+ψ(g)
- and
ψ(d⋅f⋅a)(m⊗n)=(d⋅f⋅a)(m)(n)=(d⋅f(a⋅m))(n)=d⋅f(a⋅m)(n)=d⋅ψ(f)(a⋅m⊗n)=(d⋅ψ(f)⋅a)(m⊗n).
These functions are clearly inverses (by construction). Explicitly, this looks like
ψ∘ϕ(f)(m⊗n)=ψ(m↦n↦f(m⊗n))(m⊗n)=(m⊗n↦(m↦n↦f(m⊗n)))(m⊗n)=f(m⊗n)
and
ϕ∘ψ(g)(m)(n)=ϕ(m⊗n↦g(m)(n))(m)(n)=(m↦n↦(m⊗n↦g(m)(n)))(m)(n)=g(m)(n).
Therefore ϕ and ψ define the desired bijection.
AM⊗B−⊣HomAℓ(AMB,−)
We prove that CHomAℓ(AM⊗BNC,ALD)D≃CHomBℓ(BNC,BHomAℓ(AMB,ALD)D)D as (C,D)-bimodules.
Define ϕ:HomAℓ(M⊗BN,L)→HomBℓ(N,HomAℓ(M,L)) to map
ϕ:f↦(n↦(m↦f(m⊗n))).
This is an (C,D)-bimodule homomorphism because
- ϕ(f+g)=(n↦m↦f(m⊗n)+g(m⊗n))=ϕ(f)+ϕ(g)
- and
ϕ(c⋅f⋅d)(n)(m)=(c⋅f⋅d)(m⊗n)=f(m⊗n⋅c)⋅d=ϕ(f)(n⋅c)(m)⋅d=(ϕ(f)(n⋅c)⋅d)(m)=(c⋅ϕ(f)⋅d)(n)(m).
Conversely, define ψ:HomBℓ(N,HomAℓ(M,L))→HomAℓ(M⊗BN,L) to map
ψ:g↦(m⊗n↦g(n)(m)).
This is an (C,D)-bimodule homomorphism because
- ψ(f+g)=(m⊗n↦f(n)(m)+g(n)(m))=ψ(f)+ψ(g)
- and
ψ(c⋅f⋅d)(m⊗n)=(c⋅f⋅d)(n)(m)=(f(n⋅c)⋅d)(m)=f(n⋅c)(m)⋅d=ψ(f)(m⊗n⋅c)⋅d=(c⋅ψ(f)⋅d)(m⊗n).
These functions are clearly inverses (by construction). The calculation looks very similar to the previous adjunction.
All the above isomorphisms also hold for left modules and right modules separately.