Written by dustbringer on 14 March 2024 . View source.

Tensor-Hom adjunctions for modules

To make the module structures explicit, we may write AMB_A M_B for an (A,B)(A,B)-bimodule MM. Also we write HomR(,)\Hom_{R_\ell}(-,-) for morphisms of left RR-modules, and HomRr(,)\Hom_{R_r}(-,-) for morphisms of right RR-modules.

Hom\Hom as a (bi)module

Let A,B,CA,B,C be rings. Then let

  • MM be an (A,B)(A,B)-bimodule,
  • NN be a (B,C)(B,C)-bimodule,
  • and KK be an (A,C)(A,C)-bimodule.

BHomA(AMB,AKC)C_B \Hom_{A_\ell}(_A M_B,_A K_C) _C

The additive group HomA(AMB,AKC)\Hom_{A_\ell}(_A M_B,_A K_C) can be endowed with the structure of a (B,C)(B,C)-bimodule. That is, for some left AA-module homomorphism f:MKf: M \to K, define

  • the left BB-action to be (bf)(m)=f(mb)(b \cdot f)(m) = f(m \cdot b)
  • and the right CC-action to be (fc)(m)=f(m)c(f \cdot c)(m) = f(m) \cdot c.

The left action is well-defined because (bf)(am)=f(amb)=af(mb)=a(bf)(m)(b \cdot f)(a \cdot m) = f(a \cdot m \cdot b) = a \cdot f(m \cdot b) = a \cdot (b \cdot f)(m), so bfb \cdot f is a left AA-module homomorphism. Furthermore it forms a module because

(b1b2f)(m)=f(mb1b2)=(b2f)(mb1)=(b1(b2f))(m),(b_1 b_2 \cdot f)(m) = f(m \cdot b_1 \cdot b_2) = (b_2 \cdot f)(m \cdot b_1) = (b_1 \cdot (b_2 \cdot f))(m),

where the other properties follow trivially.

The right action is well-defined because (fc)(am)=f(am)c=af(m)c=a(fc)(m)(f \cdot c)(a \cdot m) = f(a \cdot m) \cdot c = a \cdot f(m) \cdot c = a \cdot (f \cdot c)(m), so faf \cdot a is a left AA-module homomorphism. It also forms a module since

(fc1c2)(m)=f(m)c1c2=(fc1)(m)c2=((fc1)c2)(m).(f \cdot c_1 c_2)(m) = f(m) \cdot c_1 \cdot c_2 = (f \cdot c_1)(m) \cdot c_2 = ((f \cdot c_1) \cdot c_2)(m).

This is a bimodule because ((bf)c)(m)=(bf)(m)c=f(mb)c=(fc)(mb)=(b(fc))(m)((b \cdot f) \cdot c)(m) = (b \cdot f)(m) \cdot c = f(m \cdot b) \cdot c = (f \cdot c)(m \cdot b) = (b \cdot (f \cdot c))(m).

Notice that the bimodule structure was inherited from the "unused" right module structures of MM and KK.

BHomCr(AKC,BNC)A_B \Hom_{C_r}(_A K_C,_B N_C) _A

Similarly on the right, we can endow the additive group HomCr(AKC,BNC)\Hom_{C_r}(_A K_C,_B N_C) with the structure of a (B,A)(B,A)-bimodule. That is, for some right CC-module homomorphism f:KNf: K \to N, define

  • the left BB-action to be (bf)(k)=bf(k)(b \cdot f)(k) = b \cdot f(k)
  • and the right AA-action to be (fa)(k)=f(ak)(f \cdot a)(k) = f(a \cdot k).

The left action is well-defined because (bf)(kc)=bf(kc)=bf(k)c=(bf)(k)c(b \cdot f)(k \cdot c) = b \cdot f(k \cdot c) = b \cdot f(k) \cdot c = (b \cdot f)(k) \cdot c, so bfb \cdot f is a right CC-module homomorphism. This has a module structure since

(b1b2f)(k)=b1b2f(k)=b1(b2f)(k)=(b1(b2f))(k). (b_1 b_2 \cdot f)(k) = b_1 \cdot b_2 \cdot f(k) = b_1 \cdot (b_2 \cdot f)(k) = (b_1 \cdot (b_2 \cdot f))(k).

The right action is well-defined because (fa)(kc)=f(akc)=f(ak)c=(fa)(k)c(f \cdot a)(k \cdot c) = f(a \cdot k \cdot c) = f(a \cdot k) \cdot c = (f \cdot a)(k) \cdot c, so faf \cdot a is a right CC-module homomorphism. This gives a module structure with

(fa1a2)(k)=f(a1a2k)=(fa1)(a2k)=((fa1)a2)(k). (f \cdot a_1 a_2)(k) = f(a_1 \cdot a_2 \cdot k) = (f \cdot a_1)(a_2 \cdot k) = ((f \cdot a_1)\cdot a_2)(k).

This is a bimodule because ((bf)a)(k)=(bf)(ak)=bf(ak)=b(fa)(k)=(b(fa))(k)((b \cdot f) \cdot a)(k) = (b \cdot f) (a \cdot k) = b \cdot f (a \cdot k) = b \cdot (f \cdot a) (k) = (b \cdot (f \cdot a)) (k).

Now notice that this is flipped (compared to above): the left BB-module structure was inherited from BNC_B N_C, and the right AA-module structure was inherited from AKC_A K_C. If we had it the same way around here as before, we could try and define an (A,B)(A,B)-bimodule structure by (af)(k)=f(am)(a \cdot f)(k) = f(a \cdot m) and (fb)(k)=bf(k)(f \cdot b)(k) = b \cdot f(k). Again we can prove that afa \cdot f and fbf \cdot b are right CC-module homomorphisms. However we run into problems when trying to prove it is a valid module structure. For the left action, we see that (a1a2f)(k)=f(a1a2k)=(a1f)(a2k)=(a2(a1f))(k)(a_1 a_2 \cdot f)(k) = f(a_1 \cdot a_2 \cdot k) = (a_1 \cdot f)(a_2 \cdot k) = (a_2 \cdot (a_1 \cdot f))(k) is in the wrong order. For the right action, we see that (fb1b2)(k)=b1b2f(k)=b1(fb2)(m)=((fb2)b1)(m)(f \cdot b_1 b_2)(k) = b_1 \cdot b_2 \cdot f(k) = b_1 \cdot (f \cdot b_2)(m) = ((f \cdot b_2) \cdot b_1)(m) also has the wrong order.

Tensor-Hom Adjunctions

Let A,B,C,DA,B,C,D be rings. Then let

  • MM be an (A,B)(A,B)-bimodule,
  • NN be a (B,C)(B,C)-bimodule,
  • KK be a (D,C)(D,C)-bimodule,
  • and LL be a (A,D)(A,D)-bimodule

BNCHomCr(BNC,)- \otimes_B N_C \dashv \Hom_{C_r}(_B N_C, -)

We prove that DHomCr(AMBNC,DKC)ADHomBr(AMB,DHomCr(BNC,DKC)B)A_D \Hom_{C_r}(_A M \otimes_B N_C, _D K_C)_A \simeq {_D\Hom_{B_r}(_A M_B, _D \Hom_{C_r}(_B N_C,_D K_C)_B)_A} as (D,A)(D,A)-bimodules.

Define ϕ:HomCr(MBN,K)HomBr(M,HomCr(N,K))\phi: \Hom_{C_r}(M \otimes_B N, K) \to \Hom_{B_r}(M, \Hom_{C_r}(N,K)) to map

ϕ:f(m(nf(mn))).\phi: f \mapsto (m \mapsto (n \mapsto f(m \otimes n))).

This is an (D,A)(D,A)-bimodule homomorphism because

  • ϕ(f+g)=(mnf(mn)+g(mn))=ϕ(f)+ϕ(g)\phi(f + g) = (m \mapsto n \mapsto f(m \otimes n) + g(m \otimes n)) = \phi(f) + \phi(g)
  • and
ϕ(dfa)(m)(n)=(dfa)(mn)=df(amn)=dϕ(f)(am)(n)=(d(ϕ(f)a)(m))(n)=(dϕ(f)a)(m)(n). \begin{align*} \phi(d \cdot f \cdot a)(m)(n) &= (d \cdot f \cdot a)(m \otimes n) \\ &= d \cdot f(a \cdot m \otimes n) \\ &= d \cdot \phi(f)(a \cdot m)(n) \\ &= (d \cdot (\phi(f) \cdot a)(m))(n) \\ &= (d \cdot \phi(f) \cdot a)(m)(n). \end{align*}

Conversely, define ψ:HomBr(M,HomCr(N,K))HomCr(MBN,K)\psi: \Hom_{B_r}(M, \Hom_{C_r}(N,K)) \to \Hom_{C_r}(M \otimes_B N, K) to map

ψ:g(mng(m)(n)).\psi: g \mapsto (m \otimes n \mapsto g(m)(n)).

This is an (D,A)(D,A)-bimodule homomorphism because

  • ψ(f+g)=(mnf(m)(n)+g(m)(n))=ψ(f)+ψ(g)\psi(f + g) = (m \otimes n \mapsto f(m)(n) + g(m)(n)) = \psi(f) + \psi(g)
  • and
ψ(dfa)(mn)=(dfa)(m)(n)=(df(am))(n)=df(am)(n)=dψ(f)(amn)=(dψ(f)a)(mn). \begin{align*} \psi(d \cdot f \cdot a)(m \otimes n) &= (d \cdot f \cdot a)(m)(n) \\ &= (d \cdot f(a \cdot m))(n) \\ &= d \cdot f(a \cdot m)(n) \\ &= d \cdot \psi(f)(a \cdot m \otimes n) \\ &= (d \cdot \psi(f) \cdot a)(m \otimes n). \end{align*}

These functions are clearly inverses (by construction). Explicitly, this looks like

ψϕ(f)(mn)=ψ(mnf(mn))(mn)=(mn(mnf(mn)))(mn)=f(mn) \begin{align*} \psi \circ \phi (f)(m \otimes n) &= \psi(m \mapsto n \mapsto f(m \otimes n))(m \otimes n) \\ &= (m \otimes n \mapsto (m \mapsto n \mapsto f(m \otimes n)))(m \otimes n) \\ &= f(m \otimes n) \end{align*}

and

ϕψ(g)(m)(n)=ϕ(mng(m)(n))(m)(n)=(mn(mng(m)(n)))(m)(n)=g(m)(n). \begin{align*} \phi \circ \psi (g)(m)(n) &= \phi(m \otimes n \mapsto g(m)(n))(m)(n) \\ &= (m \mapsto n \mapsto (m \otimes n \mapsto g(m)(n)))(m)(n) \\ &= g(m)(n). \end{align*}

Therefore ϕ\phi and ψ\psi define the desired bijection.

AMBHomA(AMB,)_A M \otimes_B - \dashv \Hom_{A_\ell}(_A M_B, -)

We prove that CHomA(AMBNC,ALD)DCHomB(BNC,BHomA(AMB,ALD)D)D_C \Hom_{A_\ell}(_A M \otimes_B N_C, _A L_D)_D \simeq {_C \Hom_{B_\ell}(_B N_C, _B\Hom_{A_\ell}(_A M_B, _A L_D)_D)_D} as (C,D)(C,D)-bimodules.

Define ϕ:HomA(MBN,L)HomB(N,HomA(M,L))\phi: \Hom_{A_\ell}(M \otimes_B N, L) \to \Hom_{B_\ell}(N, \Hom_{A_\ell}(M, L)) to map

ϕ:f(n(mf(mn))).\phi: f \mapsto (n \mapsto (m \mapsto f(m \otimes n))).

This is an (C,D)(C,D)-bimodule homomorphism because

  • ϕ(f+g)=(nmf(mn)+g(mn))=ϕ(f)+ϕ(g)\phi(f + g) = (n \mapsto m \mapsto f(m \otimes n) + g(m \otimes n)) = \phi(f) + \phi(g)
  • and
ϕ(cfd)(n)(m)=(cfd)(mn)=f(mnc)d=ϕ(f)(nc)(m)d=(ϕ(f)(nc)d)(m)=(cϕ(f)d)(n)(m). \begin{align*} \phi(c \cdot f \cdot d)(n)(m) &= (c \cdot f \cdot d)(m \otimes n) \\ &= f(m \otimes n \cdot c) \cdot d \\ &= \phi(f)(n \cdot c)(m) \cdot d \\ &= (\phi(f)(n \cdot c) \cdot d)(m) \\ &= (c \cdot \phi(f) \cdot d)(n)(m). \end{align*}

Conversely, define ψ:HomB(N,HomA(M,L))HomA(MBN,L)\psi: \Hom_{B_\ell}(N, \Hom_{A_\ell}(M, L)) \to \Hom_{A_\ell}(M \otimes_B N, L) to map

ψ:g(mng(n)(m)).\psi: g \mapsto (m \otimes n \mapsto g(n)(m)).

This is an (C,D)(C,D)-bimodule homomorphism because

  • ψ(f+g)=(mnf(n)(m)+g(n)(m))=ψ(f)+ψ(g)\psi(f + g) = (m \otimes n \mapsto f(n)(m) + g(n)(m)) = \psi(f) + \psi(g)
  • and
ψ(cfd)(mn)=(cfd)(n)(m)=(f(nc)d)(m)=f(nc)(m)d=ψ(f)(mnc)d=(cψ(f)d)(mn). \begin{align*} \psi(c \cdot f \cdot d)(m \otimes n) &= (c \cdot f \cdot d)(n)(m) \\ &= (f(n \cdot c) \cdot d)(m) \\ &= f(n \cdot c)(m) \cdot d \\ &= \psi(f)(m \otimes n \cdot c) \cdot d \\ &= (c \cdot \psi(f) \cdot d)(m \otimes n). \end{align*}

These functions are clearly inverses (by construction). The calculation looks very similar to the previous adjunction.

Remark

All the above isomorphisms also hold for left modules and right modules separately.

Copyright © 2024 dustbringer